Where are we?

TOPIC 1 Two-Step Equations and Inequalities	LESSON 1 No Substitute for Hard Work	LESSON 2 Picture Algebra	LESSON 3 Expressions That Play Together...	LESSON 4 Formally Yours	LESSON 5 Put It on the Plane
Pacing	1 Session	2 Sessions	1 Session	3 Sessions	2 Sessions

OVERVIEW: LESSON 1

No Substitute for Hard Work

Evaluating Algebraic Expressions

ENGAGE

- Students plot one-term variable expressions with different coefficients of x.

DEVELOP

- Students compare the same one-term variable expressions when $x<0$ and $x>0$.
- They differentiate between linear and nonlinear algebraic expressions.
- They combine like terms with rational coefficients.
- They rewrite expressions representing costs with sales tax, discounts, and tips.
- They substitute values into expressions to verify the accuracy of their work.

DEMONSTRATE

- Students write an expression and substitute values into the expression to solve problems.

GRADE 7 STANDARDS

Expressions and Equations

Use properties of operations to generate equivalent expressions.

1. Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
Solve real-life and mathematical problems using numerical and algebraic expressions and equations.
2. Solve multistep real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals) using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies.

LESSON STRUCTURE AND PACING GUIDE 1 SESSION

* This activity highlights a key term or concept that is essential to the learning goals of the lesson.

Session 1

INSTRUCTIONAL SEQUENCE

ENGAGE
Establish a situation

DEVELOP
Worked Example Peer analysis

DEVELOP

Worked Example Mathematical problem solving

INSTRUCTIONAL SEQUENCE

DEVELOP

Real-world problem solving

NOTES

ACTIVITY 3

Combining Like Terms with Decimal and Fractional Coefficients

Students write expressions representing costs with sales tax, discounts, and tips.

- They combine like terms to rewrite expressions.
- They interpret the meaning of the expression in terms of the original cost.

TALK THE TALK Business Extras

Students write a two-step expression to represent a situation.

- They substitute values into the expression to solve problems.

Now that you have read the Module, Topic, and Lesson Overviews, you are ready to plan.
 Do the Math

$>$ Tear out the lesson planning template (page 2910) and jot down thoughts as you work through this lesson and read the Facilitation Notes.

- Anticipate student responses.
- Track your time so you can estimate how much time to spend on any activity.
- Decide which differentiation and collaboration strategies you may use and how that may impact pacing.

Connect the Learning

The table shows a portion of the self-paced MATHia sequence for the Two-Step Expressions and Equations topic.
Median student completion time for the entire topic: -275-290 minutes
>As you implement this lesson, consider different connections for students who are on pace and those who have not yet completed the workspaces aligned to this lesson.

No Substitute for Hard Work

Evaluating Algebraic Expressions

Session GETTING STARTED The Empty Number Line *
1
 variable

ACTIVITY 1 Algebraic Expressions *

Pacing (minutes)			KEY TERMS algebraic expression My Time
	Class Time		
			linear expression constraint

ACTIVITY 2 Combining Like Terms *

Pacing (minutes)			
My Time	Class Time		
			$\begin{array}{c}\text { KEY TERMS } \\ \text { like terms }\end{array}$
numeric coefficient			
evaluate an			
algebraic			
expression			

ACTIVITY 3 Combining Like Terms with Decimal and Fractional Coefficients $\boldsymbol{*}$

TALK THE TALK Business Extras *

Reflect on Your Lesson

(1) Log in to MyCL for:

- Editable templates
- Additional planning support
$>$ Consider the effectiveness of your lesson on student learning.

> Anticipate how you would change the lesson next time you teach it.

How will you capitalize on the things that went well?

How will you improve things that did not go as planned?

LESSON 1
No Substitute for Hard Work

Evaluating Algebraic Expressions

Learning Goals

- Compare unknown quantities on a number line.
- Solve real-life and mathematical problems using algebraic expressions.
- Combine like terms to rewrite linear expressions and determine sums and differences.
- Write and evaluate algebraic expressions.
- Rewrite expressions in different forms in context to shed light on the relationship between quantities in a problem.

$\square \bigcirc$
KEY TERMS
variable
algebraic expression
linear expression
constraint
like terms
numeric coefficient
evaluate an
algebraic
expression

- Index cards
- Tape

Setting the Stage

Assign Review

(optional, 1-2 minutes)

- Communicate the learning goals and key terms to look for
- Tap into your students' prior learning by reading the narrative statement

Provide a sense of direction by reading the question

Essential Ideas

- The algebraic expression $-x$ means the opposite of x. It does not imply that the value is always negative.
- Like terms are parts of an algebraic expression that have the same variable raised to the same power. The coefficients of the variable may be different.
- Combining like terms is a strategy to solve problems with like terms more efficiently.
- To evaluate an algebraic expression, substitute each variable in the expression with a number or numeric expression and then perform all possible mathematical operations.

Students evaluate numeric expressions. They will use this skill in ACTIVITY 2 Combining Like Terms.

IN THIS REVIEW

You can combine like terms to rewrite algebraic expressions. You can evaluate an algebraic expression by substituting a value for the variable and then performing all possible mathematical operations.

SUMMARY A variable represents an unknown quantity. You can model the relationship between variable expressions with the same variable on a number line.

Chunking the Activity
Read and discuss the introduction

- Group students to complete (1) and 2
- Check in and share

Complete (3) as a class
Share and summarize

NOTE: Before class, write these expressions on index cards: $x, 2 x, 3 x, \frac{1}{2} x,-x,-\frac{1}{2} x$. Create an empty number line either on the floor or on the board.
When implementing Question 3, you may want to have students add their expressions on the number line in this order: $x, 2 x, 3 x, \frac{1}{2} x,-\frac{1}{2} x,-x$.

Student Look-Fors

- Placement of x to the left of the 0

Students will consider this in Activity 1.

- Uneven intervals between $-x, x, 2 x$, and $3 x$ as well as between $-x,-\frac{1}{2} x$, $0, \frac{1}{2} x$, and x
- The expression $\frac{1}{2} x$ miswritten as $\frac{1}{2 x}$

Questions to Support Discourse
1 - What is the same about each expression? - How did you decide where to place x ? - How do you read each expression? TYPE $\mathbf{2}$ - Why is it acceptable that everyone didn't place x in the same location? Probing $\mathbf{3}$ - How did you use the location of x to plot the other expressions? - How did you know where to place $-x$? - Compare the locations of $\frac{1}{2} x$ and $-\frac{1}{2} x$. - What is the distance between each pair of points? What pairs of points are the same distance apart? Seeing structure

SUMMARY The algebraic expression -x means the opposite of x. It does not imply that the value of x is negative.

Provide a reason why each expression does not represent a linear expression.
The expression $3 x^{2}+5$ contains a variable raised to the second power rather than the first power.
The expression $-\frac{1}{2} x y$ contains two variables rather than a single variable.

Let's revisit how you may have plotted the expressions in the previous activity.
® The directions did not specify the possible values for x. When you plotted each expression, did you think about the set of all possible values of x or just the set of positive x-values?
In mathematics, it is sometimes necessary to set constraints on values. A constraint is a condition that a solution or problem must satisfy. It can be a restriction set in advance of
$\overline{\bar{n}} \quad$ solving a problem or a limit placed on a solution or graph so the answer makes sense in terms of a real-world scenario.

Chunking the Activity

Read and discuss the introduction and the Worked Example

Complete 1 as a class
Read and discuss the text and definition
$>$ Group students to complete 2

Share and summarize

Student Look-Fors

Whether students are annotating the students strategy

Remind students to ask themselves:

- Why is this method correct?
- Have I used this method before?
Questions to Support Discourse

Intro	- What is a constant? - What is an example of a variable raised to the first power?	TYPE
Worked Example	- How many terms are in each expression? - Which operation(s) can you use between terms? - Identify the numeric coefficients for each term.	Gathering
	- Create an example of another linear expression.	Seeing structure

NOTES

DIFFERENTIATION STRATEGY

See page 302A to assist all students with 2 .

COMMON

MISCONCEPTION

See page 302A for

 misconceptions related to 2.

ACTIVITY 1 Continued

>Analyze the number lines created by Bella and Tito using the expressions from the Getting Started.

Compare and contrast each representation.
(a) Identify the set of x-values that make each number line true. Write each constraint as an inequality.
For Bella's representation: $x>0$
For Tito's representation: $x<0$
(b) Select a value for x from your set of possible values and substitute that value for x into each expression to verify the plotted locations are correct.

Sample answer:
For $x=1$, Bella correctly labeled expressions at $-1,-\frac{1}{2}, \frac{1}{2}, 1,2$, and 3 .
For $x=-1$, Tito correctly labeled expressions at $-3,-2,-1,-\frac{1}{2}, \frac{1}{2}$, and 1 .
© Compare your values from part (b) with your classmates. Do you have the same values? If not, what does that mean?

Answers will vary, but students likely used different values for x. As long as a group consistently used the same value for the unknown, x, each group is correct because x is an unknown quantity.

THINK ABOUT One strategy to verify your placement of the cards is to substitute values for the variable x into each expression.

294

Ques	to Support Discourse	TYPE
2	- Did you think you had to use a positive value for x because the sign in front of x is positive?	Gathering
	- How did Bella and Tito think through this problem differently? - Can x represent a negative number? Explain your thinking. - What does the expression $-x$ mean? - If $x=-1$, what is the value of $-x$? - Did you use a positive or negative value for x ? Why? - Did anyone use a negative value for x ? - How many values for x are possible? - What is an example where $-x$ is larger than x ?	Probing

SUMMARY Combining like terms is a strategy to rewrite algebraic expressions and evaluate for a value of the variable more efficiently.

Chunking the Activity

Read and discuss the introduction

Group students to complete 1 and 2

Check in and share

Group students to complete 3

Share and summarize

DIFFERENTIATION STRATEGY

See page 302A to group students to complete 1 and 2 .

Student Look-Fors

Whether students are demonstrating proficiencies related to this Habit of Mind:

- Attend to precision.

NOTES

Student Look-Fors

Whether students are annotating the Worked Example and making connections between the steps

ACTIVITY 2 Continued

To evaluate an algebraic expression, you substitute each variable in the expression with a number or numeric expression and then perform all possible mathematical operations.

WORKED EXAMPLE

You can evaluate expressions to verify their equivalence.
Select any value for x, substitute that value into each expression, and evaluate.

Verify that $2 x+3 x=5 x$.

Suppose x	$=4$.	Suppose x	$=-4$.
$2(4)+3(4)$	$\stackrel{?}{=} 5(4)$	$2(-4)+3(-4) \stackrel{?}{=} 5(-4)$	
$8+12$	$\stackrel{?}{=} 20$	$-8+-12 \stackrel{?}{=}-20$	
20	$=20$	-20	$=-20$

(2) Use $x=4$ and $x=-4$ to evaluate each algebraic expression in Question 1 and verify your answers.
(a) $x+\frac{-1}{2} x=\frac{1}{2} x$

$$
\begin{aligned}
4+\frac{-1}{2}(4) & =\frac{1}{2}(4) & -4+\frac{-1}{2}(-4) & =\frac{1}{2}(-4) \\
2 & =2 & -2 & =-2
\end{aligned}
$$

(b) $-3 x+-2 x=-5 x$

$$
-3(4)+-2(4)=-5(4) \quad-3(-4)+-2(-4)=-5(-4)
$$

$-20=-20$
$20=20$
(c) $x+-x=0$

$$
4+-4=0 \quad-4+-(-4)=0
$$

296

Questions to Support Discourse		TYPE
2	- Is it easier to substitute values into the original expression or the combined expression? Explain your thinking.	Probing

TAKE NOTE .
Use parentheses to show multiplication, like $-2(-1)-7$.

DIFFERENTIATION STRATEGY
See page 302B to support students who struggle with 3 .

SUMMARY You can combine like terms to interpret real-world problems and solve them more efficiently.

Chunking the Activity

Read and discuss the introduction

Complete 1 as a class
Group students to complete 2-5

Share and summarize

DIFFERENTIATION STRATEGY

See page 302B to assist all students with 1 .

Student Look-Fors

Using self-motivation and self-discipline to persevere in problem solving

ACTIVITY 3
Two-Step Equations
and Inequalties
TOPIC 1

Combining Like Terms with Decimal HABIT OF MIND and Fractional Coefficients

You can combine like terms to rewrite expressions more efficiently.
$>$ Consider each situation to determine prices with discounts and with sales tax.
Suppose a new toy that regularly costs $\$ 26.99$ is on sale for $\frac{3}{4}$ off.
(1) Write an expression to represent the price of the toy, p, minus $\frac{3}{4}$ of the price.

Then, combine like terms to rewrite the expression.
$p-\frac{3}{4} p$
TAKE NOTE . Make sure you define
$p\left(1-\frac{3}{4}\right)$
$\frac{1}{4} p$
2 Explain what the rewritten expression means in terms of the original price of the toy.
The rewritten expression, $\frac{1}{4} p$, means that the discounted price is one-fourth of the original price.

A new shirt costs $\$ 18.99$. The sales tax is 5%.
(3) Write an expression to represent the cost of the shirt, s, plus 5% of the cost.

Then, combine like terms to rewrite the expression.
$s+0.05 s$
$s(1+0.05)$
1.05s

Explain what the rewritten expression means in terms of the original cost of the shirt.
The rewritten expression " 1.05 s" means that the price with tax is 1.05 times the original price.

298

Topic $1>$ Two-Step Equations and Inequalities

Questions to Support Discourse		TYPE
$\mathbf{2}$	- How can the store rephrase the $\frac{3}{4}$ off sale to indicate how much you have to pay? - How could you envision using this strategy while shopping?	Probing
- What does the numeric coefficient $\frac{1}{4}$ represent?	Seeing structure	
$\mathbf{3}$	- What does the numeric coefficient 1.05 represent?	Seing structure

NOTES

SUMMARY You can write an algebraic expression as a rule to represent a situation. Then, evaluate the expressions for a value of the variable to solve a problem.

Chunking the Activity

Read and discuss the directions

- Group students to complete the activity

Share and summarize

DIFFERENTIATION STRATEGY
See page 302B to
support students who struggle with 4 and 5 .

TALK THE TALK

Business Extras

Katie starts a limousine rental company. As part of her research, Katie discovers that she must charge a 7% sales tax to her customers in addition to her rental fees.
(1) Write an algebraic expression that represents how much tax Katie should collect for any amount of rental fee.

Let $r=$ the rental fee.
$0.07 r$

Katie also discovers that most limousine rental companies collect a flat gratuity from customers in addition to the rental fee. Katie decides to collect a gratuity of \$35 from her customers.

2 Write an expression that represents the total amount of additional money Kate collects for tax and gratuity.
$0.07 r+35$
(3) Write an expression that represents the total cost of any rental.
$r+0.07 r+35$
$r(1+0.07)+35$
$1.07 r+35$
(4)

Use one of your expressions to calculate the amount of tax and gratuity Katie should collect for a rental fee of $\$ 220$.
$0.07(220)+35$
$15.40+35$
Katie should collect $\$ 50.40$.Use one of your expressions to calculate the total cost of a rental for a rental fee of $\$ 365$.
$1.07(365)+35$
$390.55+35$
The total cost is $\$ 425.55$.

300

Topic $1>$ Two-Step Equations and Inequalities

Questions to Support Discourse
3 - How did you modify your expression in Question 2 to determine the total cost? - What does the numeric coefficient in your expression represent? The constant? TYPE $\mathbf{4}$ - Explain how you used substitution and the Order of Operations to calculate the total cost. - What is another way to solve this problem? Probing

Chunking the Assignment

Journal

```
Practice 1-9
```

Stretch (advanced learners) 1 and 2

Mixed Practice (page 351) 1

JOURNAL

A linear expression is any algebraic expression in which each term is either a constant or the product of a constant and a single variable raised to the first power.

An algebraic expression is a mathematical phrase with at least one variable and can contain numbers and operation symbols.

Linear expressions are specific types of algebraic expressions.

Encourage students to use LiveHint.com for help with the PRACTICE questions of this assignment.

NOTES

STRETCH

1. 137.73, $25.59,-67.02$
2. $-71.2,8,-42.05$

LESSON 1 ASSIGNMENT Continued

\$Write an algebraic expression with the fewest terms to represent each situation.
(7) Tim lives $\frac{2}{3}$ as far from school as Felipe. Felipe walks to school and then walks to Tim's house after school. What expression represents the total distance Felipe walked?

Let $d=$ the distance Felipe walks to school.
$d+\frac{2}{3} d$
$d\left(1+\frac{2}{3}\right)$
Total distance Felipe walked $=\frac{5}{3} d$
(8) A store marks up the price of an item by 20%. What expression represents the cost a customer pays for the item?

Let $p=$ the original cost of the item.
$p+0.2 p$
$p(1+0.2)$
Cost customer pays for the item $=1.2 p$
(9)

The area of Circle A is $\frac{1}{4}$ the area of Circle B. What expression represents the difference between the areas of Circle A and Circle B ?

Let $b=$ the area of Circle B.
$b-\frac{1}{4} b$
$b\left(1-\frac{1}{4}\right)$
Difference between the areas of Circle A and Circle $B=\frac{3}{4} b$

STRETCH Optional

>Evaluate each algebraic expression for the given values.
(1) $-3(2.1 x-7.9)$ for $x=-18.1,-0.3,14.4$
(2) $-9.8 t^{2}+20 t+8$ for $t=-2,0,3.5$

302

No Substitute for Hard Work

This resource details additional facilitation notes to fully assist you as you plan each lesson to support all students, students who struggle, and advanced learners. It provides differentiation strategies, common student misconceptions, and suggestions to extend certain activities.

ACTIVITY 1

Algebraic Expressions

Students differentiate between linear and nonlinear algebraic expressions. They compare the same one-term variable expressions when $x<0$ and $x>0$ and use substitution to verify the accuracy of the plotted expressions.

| CHUNK | AUDIENCE | ADDITIONAL SUPPORTS |
| :--- | :--- | :--- | :--- |
| As students
 work on 2 | All students | DIFFERENTIATION STRATEGY
 Make the distinction between comparing $\frac{1}{2}$ and $\left(-\frac{1}{2}\right)$ versus
 comparing $\frac{1}{2} x$ and $-\frac{1}{2} x$. It is correct to say $\frac{1}{2}>-\frac{1}{2}$, but for the variable
 comparison, the correct inequality symbol depends on the value of x. |
| As students
 work on 2 | All students | COMMON MISCONCEPTION
 Students often think the expression $-x$ always represents a negative
 number and x always represents a positive number. Remind students
 that $-x$ means the opposite of x. The negative sign is not an indication
 that x is a negative value. Provide an example: when $x=-3$, then $-x=3$. |

ACTIVITY 2
Session 1 of 1

Combining Like Terms

Students combine like terms with rational coefficients. They substitute values into the original expression and the expression with combined terms to verify their equivalency. Students also use substitution to complete tables with expressions with rational coefficients.

CHUNK	AUDIENCE	ADDITIONAL SUPPORTS
As an alternate	All students	DIFFERENTIATION STRATEGY
grouping		
strategy for 1		
and 2		- Have students work in pairs.
		- Assign each pair a different part of the question. For example, pair 1 starts with part (a) and pair 2 with part (b).
		- Have each pair choose three other parts to complete.

As students
work on 3

CHUNK AUDIENCE ADDITIONAL SUPPORTS
Students who struggle

DIFFERENTIATION STRATEGY

Suggest that students add extra columns or rows to the tables to show their substitution and evaluation steps.

ACTIVITY 3
Session 1 of 1
Combining Like Terms with Decimal and Fractional Coefficients
Students rewrite expressions representing costs with sales tax, discounts, and tips. They combine like terms to rewrite the expression and interpret the meaning in terms of the original cost.
CHUNK
As studen
work on

AUDIENCE ADDITIONAL SUPPORTS All students DIFFERENTIATION STRATEGY

Have students solve the problem in two different ways to demonstrate how combining like terms is a more efficient strategy.

$$
27\left(\frac{3}{4}\right)=20.25 \quad 27\left(\frac{1}{4}\right)=6.75
$$

$27-20.5=6.75$

Students write a two-step expression to represent a situation. They substitute values into the expression to solve problems.

| CHUNK | AUDIENCE | ADDITIONAL SUPPORTS |
| :--- | :---: | :--- | :--- | :--- |
| As students
 work on 4 4
 and (5 | Students who
 struggle | DIFFERENTIATION STRATEGY
 Suggest that students organize their work in table form to respond to
 these questions. |
| | Rental
 Fee Expression
 Substitution
 $\mathbf{1 . 0 7 r}+\mathbf{3 5}$ Evaluation Total Cost
 $\$ 220$
 $\$ 365$ | |

Practice the Learning

$=$ MATHbook +0 Skills Practice

The table shows the targeted practice of the skills and mathematical concepts for the Two-Step Expressions and Equations topic. The highlighted Problem Sets align with No Substitute for Hard Work.

PROBLEM SET	
$\mathbf{1}$	Evaluating Algebraic Expressions
$\mathbf{2}$	Rewriting Algebraic Expressions
$\mathbf{3}$	Modeling Two-Step Expressions and Equations
$\mathbf{4}$	Solving Equations with Double Number Lines
$\mathbf{5}$	Solving Two-Step Equations

NOTES

