Lesson
 1
 From a Ruler to a Number Line

In this lesson, students connect the ruler, which they used extensively in the previous topic, to the number line, which they used extensively in Grade 1. This connection helps students develop meaning for addition and subtraction as they relate it to measurement. Working with number lines complements students' ideas about computation in the context of counting objects.

Grade 2 Standards
 Measurement and Data
 Measure and estimate lengths in standard units.

1. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.

Relate addition and subtraction to length.
6. Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.

Learning Goals

- I can use rulers to measure an object.
- I can use a number line to add and subtract with numbers up to 20 .

About the Math

- The number line is a geometric model of all real numbers. Students can use a number line to model addition and subtraction, jumping right from a starting number for addition and left for demonstrating subtraction.
- There are two different subtraction strategies: take away and determining the difference. Although both are very effective and use a number line to solve, this lesson focuses on using the take away strategy only.

Addition and

Where are we?

From a Ruler to a
Number Line

Extending the
Number Line

3
Re-Engaging with Using Number Lines

Adding on a
Number Line

Adding on an Open Number Line

Re-Engaging with
Identifying a Start, Change, and Result Using a Number Line

Subtracting on a Number Line

Subtracting on an Open Number Line

Using Strategies to
Subtract on an Open Number Line

Creating a Picture Book

Re-Engaging with

An open-ended problem to develop language and reasoning skills

Log in to Clear Learning Center Elementary to download these digital resources and facilitation notes.

Lesson Structure and Pacing Guide

Activate
20 minutes

Guided Inquiry
 Adding and Subtracting with Paper Strips

Students model addition and subtraction with a ruler and strips of paper.

Explore 1
 (C) 15 minutes

Number Line
Adding and Subtracting with Serena
次 Cutouts of Serena
Students model jumps along a ruler and a number line that represent Adding and Subtracting with Serena addition and subtraction equations.

Adding and Subtracting on the Number Line

Adding and Subtracting on the Number Line

Students write equations based on models that show a starting number and a jump.

Reflect
 10 minutes

Writing to Learn Math

Reflect and Summarize

Students reflect on using a number line to model addition or subtraction equations.

From a Ruler to a Number Line

Reflect and Summarize

Students write equations to represent a number line model that shows a starting point and a jump. They then label number lines having different intervals.

Adding and Subtracting with Paper Strips

Purpose: To model addition and subtraction with a ruler and strips of paper

Strips of blank paper

Adding and Subtracting with Paper Strips

Setting the Stage

- Prepare strips of blank paper that are at least 15 centimeters long.
- Distribute scissors, tape, and strips of paper to each pair of students. Use strips of paper that are wide enough that students can label them.
- Direct students to the Adding and Subtracting with Paper Strips activity.

Task

- Have students work in pairs to complete the activity.
- Have one student in each pair cut and label two strips of paper that are each 8 centimeters long. Have them each tape a paper strip onto the first ruler from 0 to 8 centimeters.
- Have the other student in each pair cut and label two strips of paper that are each 5 centimeters long. Have them each tape a paper strip onto the same ruler, starting at 8 centimeters.

QH
How long is the first strip of paper? 8 centimeters
DHow long is the second strip of paper? 5 centimeters
DHow long are both strips combined? I3 centimetersWhat operation did you model? Addition
DHow can you represent this model as an addition equation?
$8 \mathrm{~cm}+5 \mathrm{~cm}=13 \mathrm{~cm}$

Habits of Mind

- Model with mathematics.
- Use appropriate tools strategically.

Differentiation Strategy

Assistance for All
Suggest that students mark off the lengths that they are measuring first and check with a partner before cutting their strips of paper. Have plenty of paper strips available for students who may make an incorrect cut first.

Language Link

Developing
Mathematical Language
Students may have learned the term take away to refer to subtraction. Demonstrate how folding lengths under in the activity relates to taking away lengths of the strip.

- Have students record the addition equation below the first ruler in the activity.
- Have one student in each pair cut and label two strips of paper that are each 14 centimeters long.
- Have the other student in each pair measure 6 centimeters from the end of each paper strip and fold that section under. Have them each label a strip with its folded length and then tape it on the second ruler.

QHow long was the original strip of paper? 14 centimeters
QHow many centimeters of paper did you fold under? 6 centimeters
QHow long is the new strip of paper? 8 centimeters
QWhat operation did you model? Subtraction
QHow can you represent this model as a subtraction equation?
$14 \mathrm{~cm}-6 \mathrm{~cm}=8 \mathrm{~cm}$

- Have students record the subtraction equation below the second ruler in the activity.

Closing

- Have students analyze the strips of paper on both rulers.

QYou taped the first two strips you cut side by side. Explain how this represents addition. Sample answer: My partner and I put the two strips of paper beside each other to make a longer strip. By combining the lengths, we added them together.

DHow do you know that the third strip of paper you folded represents subtraction? Sample answer: The strip was originally 14 centimeters long. We folded under a section of the paper strip, taking away a part of the original strip.

- Have students stay on this page as they transition to the Explore. They will continue to work with the strips of paper on these rulers.

NOTES

Adding and Subtracting with Serena

Purpose: To model jumps along a ruler and a number line that represent addition and subtraction equations

次 Cutouts of Serena
L. Adding and Subtracting with Serena

Setting the Stage

- Prepare and provide a cutout from the Cutouts of Serena resource for each student.
- Tell students that they are going to model the equations they just wrote with jumps.
- Have students place Serena at the end of the first paper strip labeled 8 centimeters.

What number is Serena on? 8

- Have students show Serena jump forward, or to the right,
5 centimeters. Draw an X on 8 and model Serena jumping 5 centimeters
 for students.

On which number did Serena land? I3

- Have students use Serena to model the subtraction equation they wrote for the second ruler.
- Have students draw an X on 14. Then, model Serena jumping backward 6 centimeters.

Why is the X on 14 ? Sample answer: The X is on 14 because that is the length of the strip I folded.

Habits of Mind

- Model with mathematics.
- Use appropriate tools strategically.

Differentiation
Strategy
Strategy
Just in Time Support
It may be beneficial for some students to show Serena starting at 0 and jumping to the first addend or the minuend and then jumping to the second addend or the subtrahend.

\{ Differentiation Strategies

Just in Time Support

Jumps on the number line may present a considerable cognitive challenge to students. What stands out visually is the dots, not the spaces in between them. You may want to show students how to jump on the number line one number at a time to help build their understanding of jumps on a number line.

Challenge Opportunity

Have students create their own addition and subtraction equations. They should draw them on a number line and have a partner write the equation that models their jumps.

Task

- Direct students to the Adding and Subtracting with Serena activity.
- Have students draw an X on the number 5 on the ruler. Then, have them place Serena on top of the X. Tell students to jump Serena forward 4 centimeters.

Does Serena's jump model addition or subtraction? How do you know? Sample answer: Serena's jump models addition because she jumps forward to a greater number.

What equation does Serena's jump model? $5+4=9$

- Tell students that the addition and subtraction equations do not have to represent measurements, so they can also use a number line to model any addition and subtraction equation.
- Have a student read the definition for number line.

DHow are a ruler and a number line alike? Sample answer: They both show numbers in order, and the numbers are all the same distance apart.How are a ruler and a number line different? Sample answer: The distance between the numbers matters on a ruler, but it doesn't on a number line.

- Have students continue to model addition and subtraction on the number line using these expressions. After each one, have students describe where they start and how Serena jumped.
- $6+5$
- $4+8$
- 12-7
- 11-2

Closing

- Facilitate a discussion about how they used a ruler and a number line to model addition and subtraction.How do you move Serena when you are modeling addition?
Sample answer: I move Serena forward toward greater numbers.
DHow do you move Serena when you are modeling subtraction?
Sample answer: I move Serena backward toward lesser numbers.
. How does a ruler and a number line support your thinking when adding and subtracting? Sample answer: They both have numbers in order, so I can show jumps that represent numbers I am adding or subtracting.

Adding and Subtracting on the Number Line

Purpose: To write equations based on models that show a starting number and a jump

L. Adding and Subtracting on the Number Line

Setting the Stage

- Direct students to the Adding and Subtracting on the Number Line activity. Have a student read the directions aloud.

Task

- Have students work in pairs to complete the activity.
- Monitor students to determine whether they can identify the starting point, the jump (change), or the ending point (result) based on the model and work through the questions together.

Closing

- Facilitate a discussion about Question 2. Have students describe their model and share their equation.How can you describe this model? Sample answers: This is an addition model because the jump is forward. Serena started at 2 and jumped 7 spaces to the 9.

What equation does this model represent? $2+7=9$

Habits of Mind

- Model with mathematics.
- Use appropriate tools strategically.

Common Misconception

Students sometimes count the dots they pass over as the jump distance when determining the jump difference. When necessary, remind students that the distance of the jump is the number of spaces between the starting and ending points. Have students place cubes within each space to indicate the number of jumps it takes to move from 1 number to another.

맘 Ongoing喑 Assessment

 Observe students as they write equations to model each jump.- For each ruler and number line, can students explain the meaning of the arrow, the X, and the jump distance?
- Can students distinguish addition from subtraction?

Habits of Mind

- Model with mathematics.
- Use appropriate tools strategically.

Language Link

Multilingual Learner Support
Display the words line, dot, label, jump, starting point, ending point, and equation. Display a number line model and have students label it with the terms to reinforce the mathematical language in the lesson.

Differentiation Strategy
Just in Time Support

Consider providing students with specific equations to use as they explain how to model addition and subtraction using a number line. You may wish to draw the model as students explain, making sure that students relate each number in the equation to the starting point, the jump, and the ending point on the model.

Reflect and Summarize

Purpose: To reflect on using a number line to model addition or subtraction equations

Reflect and Summarize

Setting the Stage

- Direct students to the Reflect and Summarize activity. Have a student read the question aloud.

Task

- Have students work individually to answer the question.

Reflect

Reflect and Summarize
> Think about what you learned in this lesson.
1 How can you model addition or subtraction equations on a number line? Explain your thinking using words, numbers, or pictures.

Sample answer: For addition, I can start on the number line at one of the numbers I am adding and then show a jump forward to the ending number, or sum. For subtraction, I can start on the number line and jump backward the number of spaces I am subtracting. Where I land is the difference.

68 sixty-eight LXVIII $34+34$

Closing

- Facilitate a discussion about using a number line to add or subtract.

DHow can you model addition on a number line? Sample answer: I can model a jump forward so that the ending number is greater than the starting number.

DHow can you model subtraction on a number line? Sample answer: I can model a jump backward so that the ending number is less than the starting number.

NOTES

Planning to Re-Engage

Use the Reflect activity to assess each student's current level of understanding with using number lines to model addition and subtraction. In preparation for the Re-Engagement Lesson, indicate here which students are demonstrating green, yellow, and red levels of understanding.

Green

Student demonstrates a complete
and correct understanding.

Yellow

Student demonstrates a
partial understanding.

Red

Student cannot yet demonstrate
an understanding or demonstrates
significant misunderstandings.

Assignment

From a Ruler to a Number Line

Purpose: To write equations to represent a number line model that shows a starting point and a jump and to label number lines having different intervals
 a Number Line
> Write the equation modeled by each jump.

NOTES

