



 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

You repeat this process on the remaining sides.

3 Describe the iterative process to create the Koch snowflake.

Stage (n)	Length of a Side	Number of Sides	Total Perimeter
0	S	3	Зs
1			
2			
3			
4			
5			
n			

5 Identify the type of sequence represented by each characteristic.

(a) The length of a side

b The number of sides

C The total perimeter

6 Describe what happens to each characteristic as the iterative process continues.

(a) The length of a side

b The number of sides

7 Does this situation seem possible? Explain your reasoning.

8 Consider the equilateral triangle in **STAGE 0**. Each side length is 1 unit. (a) Calculate the altitude. Leave your answer in radical form.

THINK ABOUT ...

What two special right triangles will the altitude divide the equilateral triangle into?

(c) What is the total area of the **STAGE 0** figure rounded to the nearest hundredth?

(b) Calculate the area of the equilateral triangle. Leave your answer in radical form.

TOPIC 4

9 Consider one of the smaller triangles that you add to the **STAGE 0** figure.

(a) Calculate the altitude.

b Calculate the area of this triangle.

\bigcirc	Calculate the total area of the STAGE 1 figure. Round you	ır
	answer to the nearest hundredth.	

TAKE NOTE ...

To prevent rounding errors, leave your answers in radical form until the last step.

Consider one of the smaller triangles that you add to the STAGE 1 figure.
 (a) Calculate the altitude.
 (b) Calculate the area of this triangle.

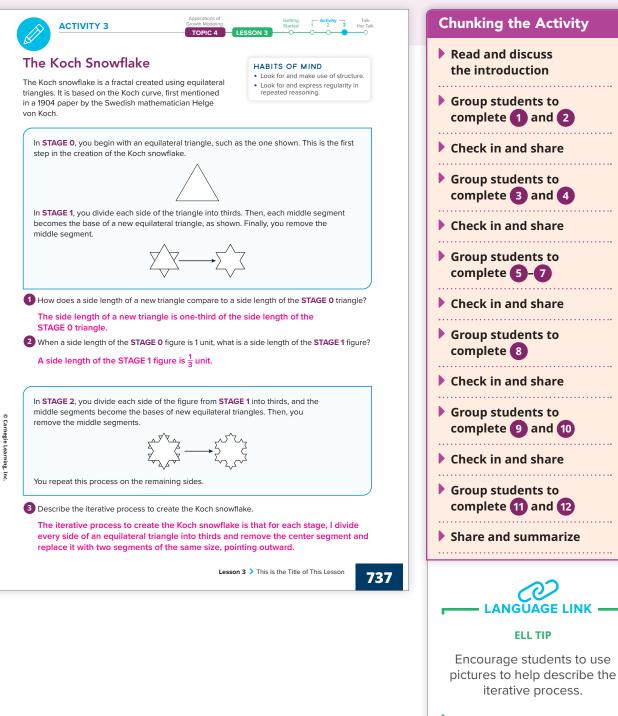
Calculate the total area of the **STAGE 2** figure. Round your answer to the nearest hundredth.

11 Complete the table shown for **STAGE 0** through **STAGE 2**.

Stage	Number of New Triangles	Area of One New Triangle	Total Area in Radical Form	Total Area (nearest hundredth)
0				
1				
2				
3				

12 Use your table to answer each question.

(a) Predict the number of new triangles in the **STAGE 3** figure, the area of one new triangle, and the total area of the figure. **Explain your reasoning**. Record your results in the table.


b What happens to the number of new triangles as the stage number increases?

(c) What happens to the area of one new triangle as the stage number increases?

(d) What happens to the total area as the stage number increases? **Explain your reasoning**.

ACTIVITY 3

SUMMARY The Koch snowflake is another example of a fractal.

Chunking the Activity Read and discuss

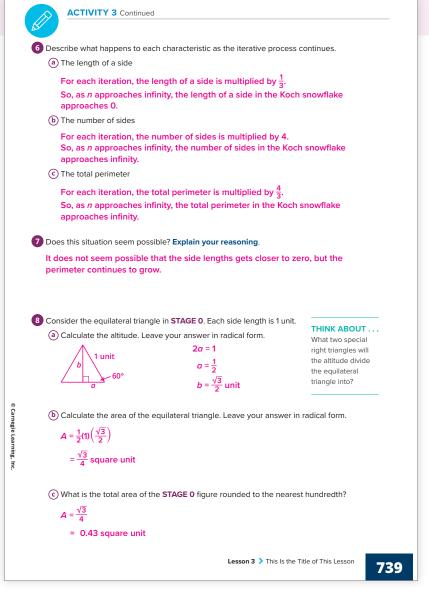
AGE LINK

ELL TIP

ACTIVITY 3 Continued

Stage (n)	Length of a Side	Number of Sides	Total Perimete
0	S	3	3s
1	$\left(\frac{1}{3}\right)^1 s$	12	4s
2	$\left(\frac{1}{3}\right)^2 s$	48	<u>48</u> 9
3	$\left(\frac{1}{3}\right)^3 s$	192	<u>192</u> 27 s
4	$\left(\frac{1}{3}\right)^4$ s	768	<u>768</u> 81 s
5	$\left(\frac{1}{3}\right)^5 s$	3072	<u>3072</u> 243 ^S
n	$\left(\frac{1}{3}\right)^n s$	3 · 4 ⁿ	$3 \cdot \left(\frac{4}{3}\right)^n \cdot s$
 a) The length The length b) The numb 	n of a side th of a side represent er of sides	ented by each character ts an infinite geometr its an infinite geomet	ic sequence.
The total p The total p The total		s an infinite geometri	c sequence.

Questions to Support Discourse


Vhat patterns did you recognize in the table to construct the expressions for <i>n</i> sides?		
 relates to snowflakes. What patterns did you recognize in the table to construct the expressions for <i>n</i> sides? 	4	
construct the expressions for <i>n</i> sides?	•	Probing
How do you know these are geometric	•	
sequences? str	5.	Seeing structure

© Carnegie Learning, Inc.

© Carnegie Learning, Inc.

TYPE

© Carnegie Learning, Inc.

 Questions to Support Discourse
 TYPE

 6
 • How can you tell whether the values approach zero or infinity?
 Seeing structure

 8
 • How did you determine the altitude of the triangle?
 Probing

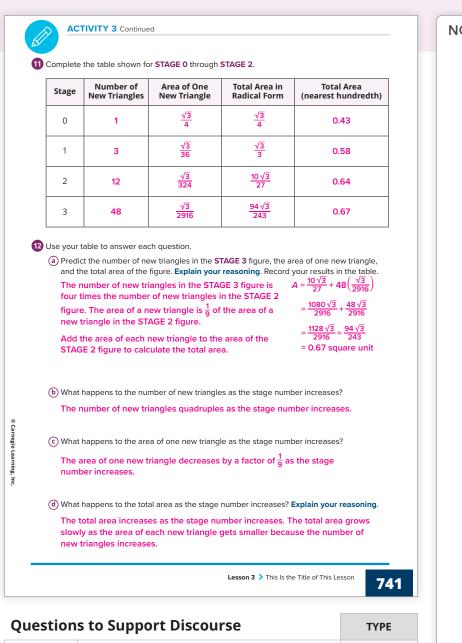
NOTES

TOPIC 4

ACTIVITY 3 Continued

NOTES

Student Look-Fors


Utilizing relationship skills by communicating clearly and listening well

(a) Calculate the altitude.		(b) Calculate th	e area of this triang	
b $\frac{1}{3}$ unit 60°	$2a = \frac{1}{3}$ $2a = \frac{1}{6}$ $b = \frac{\sqrt{3}}{6}$ unit	= (0) ($\frac{1}{2} \left(\frac{1}{3}\right) \left(\frac{\sqrt{3}}{6}\right)$ $\frac{\sqrt{3}}{36}$ square unit	
(c) Calculate the total area of answer to the nearest hu $A = \frac{\sqrt{3}}{4} + 3\left(\frac{\sqrt{3}}{36}\right)$ $= \frac{9\sqrt{3}}{36} + \frac{3\sqrt{3}}{36}$ $= \frac{12\sqrt{3}}{36} = \frac{\sqrt{3}}{3}$ $\approx 0.58 \text{ square unit}$		ure. Round your	TAKE NOTE To prevent rounding errors, leave your answers in radical form until the last step.	
0 Consider one of the smaller (a) Calculate the altitude.	triangles that you a	add to the STAGE 1 figure. (b) Calculate the are		
$\frac{1}{9}$ unit $\frac{1}{9}$ 60°	$2a = \frac{1}{9}$ $a = \frac{1}{18}$ $b = \frac{\sqrt{3}}{18}$ unit	$A = \frac{1}{2} \left(\frac{1}{9}\right) \left(\frac{\sqrt{3}}{18}\right)$ $= \frac{3}{324} \text{ square}$	unit	
© Calculate the total area of figure. Round your answ				
nearest hundredth.				
$\mathcal{A} = \frac{\sqrt{3}}{3} + 12\left(\frac{\sqrt{3}}{324}\right)$ $108\sqrt{3} 12\sqrt{3}$				
$=\frac{108\sqrt{3}}{324}+\frac{12\sqrt{3}}{324}$ $=\frac{120\sqrt{3}}{324}=\frac{10\sqrt{3}}{27}$				
= <u>324</u> = <u>27</u> ≈ 0.64 square unit				
Topic 4 > Applications of Gr	owth Modeling			

ACTIVITY 3 Continued

Question	1116	
9	 How many times smaller is the triangle in Stage 1 compared to the triangle in Stage 0? Why? How did you calculate the total area? 	Probing
10	 How do your calculations compare to those for the previous stage? 	Probing

© Carnegie Learning, Inc.

• How did you use patterns to complete the table

• Why doesn't the total area column have a

for Stage 3?

recognizable pattern?

NOTES

12

Probing